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ELASTIC BEAMS OF GREATEST LATERAL EXTENT

THOMAS A. MCMAHON

Harvard University, Division of Engineering and Applied Physics,
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Abstract-Numerical solutions are presented for the deflections of slender, uniform elastic beams, self-loaded
and built into a supporting wall. The beams are alike in every property but length. There exists a critical length
which maximizes the lateral reach; longer beams droop so much under their own weight that their tips actually
move closer to the supporting wall. The critical length depends only on the angle at which the beam leaves the
supporting wall.

1. INTRODUCflON

SUPPOSE that a uniform cantilever beam is loaded under its own weight. The deflected
shape of such an elastic beam has been considered by Holden [1] and Wang [2], each of
whom employed numerical methods to calculate the locus of the elastic line for a range of
values of the uniformly distributed load. An important question which has apparently
not yet received attention concerns the properties of beams whose tips extend the greatest
possible lateral distance away from the cantilever support. It will be shown that the thick
ness of such uniform beams, when made of the same material, must increase as the length
raised to the! power, a fact which has important consequences in determining the way
the proportions of both plants and animals change with size.

2. THE UNIFORMLY LOADED CANTILEVER

In Fig. 1, a beam whose flexural rigidity is EI is loaded by a weight w per unit length.
Length along the neutral axis is s and the tangent to the axis makes an angle ewith the
horizontal. The beam makes an angle eo with the support at its built-in end. For such
slender beams,

d2e w
- = --(/-s)cose
ds2 EI

with e= eo at s = 0, de/ds = Oat s = I.
Introducing a dimensionless arc length and load parameter as respectively

s
'1=-

I

and

w/3

k=
EI
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FIG. 1. Length along the neutral axis is s. The tangent to the neutral axis makes an angle () with the
horizontal. Flexural rigidity is EI and weight per length is w.

the equation becomes

(4)- k( 1- rJ) cos 0
d20
drJ2

with 0 = 00 at rJ = 0, dOjdrJ = 0 at rJ = 1.
Assuming some initial shape 0(1]), (in this case the third-order polynomial given by

linear theory), equation (4) may be solved numerically by calculating values for the right
hand side, integrating twice, and thereby obtaining a new 0(1]) which may be iterated until
the desired accuracy is achieved. The x and y coordinates of the neutral axis are then

(5)

and

(6)Y(rJ) = Irsin 0 drJ·

In the present work, Simpson's rule was employed for the integrations and the accuracy
of approximation to the solution of (4) was 1·0 x 10- 5.

3. LOCUS OF THE TIP

We are interested in the successive shapes of a long, thin cantilever beam as wand EI
(hence diameter or thickness) is kept constant but the length I is increased.

Dimensionless coordinates for the neutral axis will be defined as

x = xl(~) + = k+rcos 0 d1] (7)

and

y = Y!(~r = kt f sin 0 drJ. (8)

Figure 2(a) shows the elastic line of such a beam for two different lengths when the launch
angle 00 is O. The locus of the tip of the beam (rJ = 1) as I changes is shown as a solid line.
It is apparent that the tip of the beam reaches a maximum lateral extent X max for a specific
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FIG.2(a). Locus of the tip when eo = O. The shapes of the neutral axes for beams of two different lengths
but otherwise the same properties are also shown. (b). Locus of the tip when eo = n/4. The beam of

greatest lateral extent has a chord which makes an angle -eD with the horizontal.

value of I; longer beams droop so much that their tips actually move closer to the sup
porting wall. A beam of this critical length has a chord which makes an angle eD with the
horizontal, where eDwill be termed the "droop angle". This aD depends only on the launch
angle ()o' Figure 2(b) illustrates how the locus of the tip and hence eD is changed when eo
is n14.

In Fig. 3, both Xmax and the droop angle ()D are plotted vs the launch angle eo for
-n12 ~ ()o ~ n12. It is evident that Xmax reaches its greatest value when ()o is in the vicinity
of n12, so that a fisherman paying out a long, limber pole should ultimately hold his end
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FIG. 3. Droop angle -OD' maximum lateral extent X max , and the corresponding load factor kmax as
a function oflaunch angle 00. For any 00' kmax determines the length of the beam ofgreatest lateral extent.

of the pole straight up to assure that the tip reaches out as far as possible. The droop angle
(JD is equal to the launch angle (Jo when (Jo = - n/2, but slowly approaches 0 as (Jo is in
creased. Notice that (JD is still slightly negative as (Jo goes through n/2. A curve showing
how kmax ' the load parameter for the beam of greatest lateral extent, depends on (Jo is also
shown. As expected, kmax increases with increasing (Jo'

4. CONCLUSIONS

A cantilever beam of the greatest lateral extent is one whose load parameter kmax((Jo)
maximizes the dimensionless displacement ofthe tip, X(l). If such a beam has a rectangular
cross-section, the critical length becomes

(9)ier = [k~~xJl:grdt
where pg is the weight/unit volume of the material, and d is the depth of the cross-section.
For beams of circular or elliptical cross-section,

(10)

where d is the diameter of the circular cross-section or the diameter of the ellipse in the plane
of bending.

An important conclusion may be inferred from equations (9) and (10), which differ
only by a numerical constant. In comparing elastic beams of the greatest lateral extent
made of the same material with the same cross-sectional shape, one should find that
length increases as thickness or diameter raised to the ~ power. McMahon [3J has examined
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the consequences of this prediction, when combined with an identical prediction based on
the elastic stability of slender columns under their own weight, in determining limits for
the proportions of trees and animals. A model requiring the lengths of living organisms
to increase as the diameter to the i power is found to be in agreement with published data,
arguing that elastic criteria impose limits on biological proportions, and consequently, as
derived in [3J, on metabolic rates.
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AOCTpaKT-)l.aIOTcli '1HCneHHble peweHHlI j),JIli nporH6oB fH6KHX, OD,HOpOD,HO ynpyrHx 6anoK, caMoHarpy
lKeHHblX H 3aD,enaHHblX B nOD,D.eplKHBalOwe~ CTeHKe. 6anKH B KalKD,OM CBO~CTBe OD,HHaKOBbl, 3a HCKnlO'I
eHHeM D,nHHbI. HaXOD,HTCli HeKOTopali KpHTH'IeCKali j),JIHHa, KOTopali YBenH'IHBlleT D,O Kpa~HocTH nonepe
'1Hbl~ BblHOC CTpenbl nporH6a. 60nee D,nHHHble 6anKH CKnOHlilOTCli TeM 3Ha'lHTenbHO noD, BnHlIHHeM
C06CTBeHHOrO Beca, 'ITO HX KOHLIbl <ilaKTH'IeCKH nepeMewalOTCli 6nHlKe K nOD,D.eplKHBalOtl.\elt CTeHKe.
KpHTH'IeCKali D,nHHa 3aBHCHT TonbKO OT yrna, npH KOTOpOM 6anKa OCTaBnlleT 1I0D,D.eplKHBalOtl.\ylO cTeHKy.


